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Abstract Presence of energy bands in quantum energy spectra of molecules reflects
the existence of “slow” and “fast” motions in corresponding classical problem. Generic
qualitative modifications of energy bands under the variation of some strict or approx-
imate integrals or motion considered as control parameters are analyzed within purely
quantum description, within semi-quantum one (slow dynamical variables are classi-
cal; fast variables are quantum) and within purely classical one. In quantum approach
the reorganization of bands is seen from the redistribution of energy levels between
bands. In semi-quantum approach the system of bands is represented by a complex vec-
tor bundle with the base space being the classical phase space for slow variables. The
topological invariants (Chern classes) of the bundle are related to the number of states
in bands through Fedosov deformation quantization. In purely classical description
the reorganization of energy bands is manifested through the presence of Hamiltonian
monodromy.

Keywords Energy bands - Adiabatic approximation - Topological invariants -
Hamiltonian monodromy

1 Introduction

It is well known that the energy spectra of a typical molecular system consists of
groups of energy levels which are often called bands (electronic, vibrational, rota-
tional, etc.). The presence of such bands is due to the natural splitting of dynamic
variables into several groups in such a way that the characteristic energy excitations
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(or characteristic times) differ significantly between different types of motion. Typi-
cally, electronic excitation, A E., is much higher than typical vibrational excitation,
AE\,ip, and the rotational excitation, A Ert, is still smaller. In an equivalent way we
can say that electronic variables are fast, vibrational variables are slow, and rotational
variables are even more slower. Such an idealized picture has obviously rather narrow
range of applicability because of the modification of the relative excitations due to
rovibronic interactions. At the same time very often we see that under the variation
of some physical characteristics, like energy, angular momentum, polyads quantum
numbers, etc., individual bands “intersect”, mix in some interval of the variation of
control parameters, but the band structure reappears again and the rearrangement of
bands is a generic phenomenon which presents in many different molecular problems.

In what follows we introduce the mathematical formalism which is intended pre-
cisely to describe the phenomenon of rearrangement of energy bands caused by cou-
pling of slow and fast motions (or alternatively speaking by coupling of slow and fast
dynamical variables). This is in some sense a short review of one particular qualitative
feature presented in families of effective Hamiltonians describing excited quantum
systems and depending on some control parameters. Rearrangement of energy bands
is a qualitative phenomenon which is tightly related with the adiabatic separation of
variables. This is one of the approximations which is widely used in almost all quantum
chemical studies. Therefore the author hope that the qualitative ideas he follows could
be of interest for ab initio quantum chemistry community because they allow some-
what alternative interpretation of generic phenomenon of energy levels redistribution
between energy bands.

For a more general reviews of qualitative theory of highly excited finite particle
quantum systems (atoms and molecules) the reader is invited to see earlier publica-
tions written for differently oriented reader: for mathematicians [1-4], for physicists
[5-8], for theoretical chemists and in particular for molecular spectroscopists [9, 10]
and references therein.

2 Quantum—classical correspondence. Topological and symmetry arguments

The key point of the qualitative analysis of a given quantum problem is the classical-
quantum correspondence. In order to find the qualitative features of energy level system
for quantum problem we construct the classical limit and study integrable approxima-
tions to it. Initial quantum Hamiltonian is supposed to be the effective Hamiltonian
which describes, for example, only rotational states for one or several vibrational
states, rovibrational states for one or several electronic states, etc. Several examples of
different classical limits for effective quantum operators are listed in Table 1. Without
going into details we just note that formal construction of limiting classical phase
space for quantum problem is based on the coherent state approximation [11,12].
Topology of the limiting classical phase space and its stratification under the action
of the symmetry group of the problem are responsible for the global organization of
the system of classical trajectories and of the pattern of corresponding eigenvalues.
We are mainly interested in the problems where at the beginning the whole set of
dynamic variables can be split into “slow” and “fast” parts (for simplicity we restrict
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Table 1 Classical limiting phase space for different quantum problems

Effective operator Corresponding classical phase space

Rotational S7 Two-dimensional sphere

Vibrational polyads formed by n degenerate modes CP, Complex projective space

Vibrational polyads formed by modes in ny:. . .:nj CPy, ,...n; Weighted projective space
resonance

Rydberg multiplets S2 xS

ourselves with only two groups of variables). Whereas the complete problem is nat-
urally quantum, in order to understand better the qualitative features of its energy
spectrum we can construct the simplified models by going to classical limit either
completely, or partially. There are two kinds of models.

(i) Both “fast” and “slow” variables are treated as classical. Classical limiting phase
space in such a case is a product of classical phase spaces for “slow” and for
“fast” variables. As an example we can take an effective Hamiltonian which
describes the rotational structure of vibrational polyads formed by doubly degen-
erate vibrational mode. In the complete classical limit this quantum Hamiltonian
corresponds to classical function with two degrees of freedom defined on the clas-
sical phase space S» x S where one $; factor corresponds to rotational phase
space, and another S factor corresponds to polyad phase space which for two
degenerate modes is a CP; complex projective space which is equivalent to S».

(ii) Only “slow” variables become classical whereas “fast” variables remain quan-
tum. Such approach is extremely useful when only a small number of quantum
states over fast variables are relevant. We name such model a “semi-quantum”
model. As an example of application, let consider the quantum effective rota-
tional Hamiltonian for doubly degenerate fundamental vibrational state. Using
classical limit for rotational “slow” variables we keep quantum description for
vibrational states. The resulting semi-quantum model corresponds to 2 x 2 matrix
quantum Hamiltonian defined over classical phase space S, which is the classi-
cal limiting phase space for rotational motion.

3 Semi-quantum model

Slightly more formal description of the semi-quantum model can be done as follows.
Let us suppose that the limiting classical phase space for slow variables is a compact
manifold M, and there are k quantum states associated with the fast variables. The
Hamiltonian is such a case becomes a k x k matrix symbol defined over manifold M.
Its eigenvalues play the role of classical energy surfaces for k quantum states.

Each point of the classical phase space is associated with k quantum states. This
means that we have a vector bundle of rank k defined over the manifold M which is
the base space of this bundle. As soon as quantum states are described by complex
numbers we have a complex vector bundle. It is known that complex vector bundles
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can be topologically non-trivial. Their non-triviality is characterized by the so called
Chern classes [13,14].

If there is no overlap between internal structures of different quantum states we can
treat internal structure of each quantum state independently and the so obtained vector
bundle can be decomposed into k line bundles. In the simplest situation all these line
bundles are trivial. Depending on the dimension of the base space only first of higher
Chern classes are needed to characterize the topology of the bundle. All information
about Chern classes can be summarized in a formal way in a Chern polynomial

l—l—clx+czx2+--~, (1)

where x is an auxiliary variable and ¢; are i-th Chern class. The degree of the Chern
polynomial cannot be higher than the complex dimension of the base space or the rank
of the vector bundle. In order to study the reorganization of band structure in semi-
quantum models we need to define the operation of “direct sum” of bundles which
corresponds to “mixing” of isolated bands. More formally such operation is known as
Whitney sum of vector bundles. When we form the more complicated vector bundle
which describes two coupled bands from two bundles with the same base space (cor-
responding to energy bands for two isolated quantum states) the Chern polynomials
of individual bundles should be multiplied and the rank of the sum is the sum of ranks.

3.1 One slow degree of freedom

The simplest situation takes place for problems with one-dimensional space of “slow”
(classical) variables. In such a case two initially isolated bands are represented as line
bundles with respective Chern polynomials (1 + c{x) and (1 + cll7 x) (see
Fig. 1). The total vector bundle has rank two and it is in fact just a sum of two individual
line bundles. Under the variation of some control parameter two eigenvalues of 2 x 2
symbol Hamiltonian over classical phase space generically pass through degeneracy
points. If the degeneracy of two eigenvalues takes place the vector bundle becomes
undecomposable due to the presence of degeneracy. But the degeneracy generically
lifts away under further variation of control parameter. Two bands again become iso-
lated but their first Chern classes can change. The only restriction is the conservation
of the sum of first Chern classes for two bands, i.e. the conservation of the topological
invariants of the total bundle.

Figure 1 shows this modification schematically. The modification of the first Chern
class depends on the type of singularity which takes place at the degeneration. If there

—
(1+c?x)\ . /1+(c?+c)x
>< I+(cq+e)) x
a
(1l — | \1+(c1— o) x
[ —

Fig.1 Rearrangement of two topologically non-trivial bands. Chern polynomials for each band are shown
schematically on the right
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are no additional symmetry requirements the modification of the first Chern class is
typically £1.

It is easy to verify by a simple manipulation with Chern polynomials that in the
case of problems with one degree of freedom for slow dynamical variables the rear-
rangement of two trivial (or even non-trivial) bands is possible. Such rearrangement
is associated with the modification of the first Chern classes of two bands. For purely
quantum problem such rearrangement is manifested by the redistribution of the energy
levels between bands. The fact, that the redistribution of energy levels between energy
bands under the variation of control parameter is a generic qualitative phenomenon
was initially stated in 1988 [15] on the example of coupling of two angular momenta
and on the analysis of the rotational structure of several vibrational states. In the same
paper [15] the relation between the redistribution and such topological invariant as
Chern class was suggested. But only about 10 years later that the precise statement
relating the number of energy levels going from one band to another and the modifica-
tion of Chern numbers in the associated semi-quantum model was stated and proved
[16,17]. This interpretation enables one to associate with energy bands in molecules
the topological quantum numbers in a way similar to topological quantum numbers
used previously in quantum Hall effect and in other domains [18].

3.2 Two slow degrees of freedom

The description of the rearrangement of bands becomes significantly more compli-
cated if the number of slow degrees of freedom is larger than one. We will discuss for
simplicity one concrete case of a problem with two slow degrees of freedom which
naturally appears in molecular systems when one study the vibrational polyad structure
of several electronic states. Electronic variables are considered as fast ones whereas
the variables associated with the internal structure of vibrational polyads are treated
as slow ones. In a particular case of vibrational polyads formed by three degenerate
modes, the corresponding limiting classical phase space is complex projective space
CP, [19,6,8]. Intra-polyad dynamics has two degrees of freedom and the introduced
earlier semi-quantum model corresponds to a bundle with the base space being CP».
Now to characterize the vector bundle associated with several quantum (electronic)
states we need to use both first and the second Chern classes and in particular to write
the Chern polynomial including quadratic terms. To see the new features arising for
problems with two slow degrees of freedom we formulate the following simple ques-
tion. Is it possible for two bands with trivial topological structure to rearrange into two
bands with non trivial topology? The answer is “no”. To see the origin of such firbid-
dance it is sufficient to write the Chern polynomial for two trivial bands. As soon as all
Chern classes are trivial the corresponding polynomial is simply 1. On the other hand,
if we suppose that two trivial bands can be rearranged into two nontrivial bands, each
of the band should be represented by a nontrivial line bundle with non-zero first Chern
class. Let suppose that these two Chern polynomials are (1 +c¢x) and (1+4c/x). Their
multiplication should give the Chern polynomial for the whole vector bundle over the
base space having two degrees of freedom. But this means that when multiplying
polynomials we need to conserve all terms up to degree two. As soon as we have
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(14 c1x)(1 +cjx) = 1+ (1 + c)x + e1chx?, 2)

the total Chen polynomial can be trivial only if both ¢ and ¢/ are zero. This means
that it is impossible to realize the rearrangement of two trivial bands over CP, phase
space into two nontrivial bands.

The nontrivial rearrangement can take place if the number of bands becomes three.
It is easy to see that the identity

=0+ cix)(1 —c1x+ c%xz) 3)

can be interpreted as a transformation between three initial trivial bands (each is char-
acterized by a trivial Chern polynomial 1) and two final nontrivial bands. One of
two final bands corresponds to nontrivial line bundle with non zero first Chern class.
Another final band corresponds to rank 2 vector bundle with both first and second
Chern classes being nontrivial.

The schematic representation of such transformation is given in Fig. 2. The impor-
tant feature of this transformation is the formation of only two final bands instead of
three initial bands. We describe such situation as a result of a topological coupling of
two bands which is possible only in the presence of the third bands. It is easy to see
that the so formed topologically coupled band can not be decomposed into two bands
without coupling with some extra band.

The phenomenon of formation of topologically coupled bands was first described
by Faure and Zhilinskii [20]. They have studied the natural generalization of the angu-
lar momentum coupling model [15,16] based on the coupling of representations of
SU (2) group to the case of coupling of representations of the SU (3) group. The most
simple physical interpretation of the corresponding model is the rearrangement of
vibrational polyads in the case of F—f Jahn-Teller effect [21], i.e. in the coupling
of triply degenerate electronic states and polyads formed by triply degenerate vibra-
tions, in the presence of additional perturbation which splits slightly the electronic
degeneracy.

4 Complete classical model. Rearrangement and monodromy

The semi-quantum model is well adapted to describe the reorganization of bands in
the case when the number of bands (or equivalently the number of quantum states)

1\
’HC]X
1
1 — |1
1/ ! \l—clx+c?x

Fig. 2 Possible rearrangement of three initially trivial bands defined over classical phase space with two
degrees of freedom. Chern polynomials are schematically associated with bands on the right part of the
figure
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involved in the treatment is small, for example equals two or three. In contrast, if the
number of bands becomes to be large, but it remains always small as compared to
the number of states within each band, it is quite instructive to study the quantum
problem in the classical limit with both “slow” and “fast” variables being considered
as classical ones.

Such classical limit leads to the analysis of classical integrable models. One of inte-
grals labels the bands, another characterizes the internal structure of bands. In order to
relate the phenomenon of the reorganization of bands observed within the semi-quan-
tum model with the characteristic features of the classical integrable problems we need
to note that classical completely integrable problem admits the construction of local
action-angle variables. These variables are related with the local toric fibration of the
classical phase space by levels of constant values of classical integrals of motion. At
the same time globally the action-angle variables do not generally exist. This reflects
the fact that the fibering by levels of constant values of integrals of motion has singu-
larities. The problem of existence of global action-angle variables and of obstructions
to their existence was studied in papers by Nekhoroshev [22] and Duistermaat [23]. In
[23] the special attention was paid to the Hamiltonian monodromy as a first obstruction
to the existence of global action-angle variables.

Generic singularity which appears in integrable classical fibration with two degrees
of freedom is the so called pinched torus (“focus—focus” singularity). Pinched torus
can be obtained from a regular torus by shrinking one noncontractible loop to a point.
Due to presence of such singularity at some internal point in a space { f1, f>} of values
of integrals F1, F» of the integrable classical problem the local action-angle variables
cannot be globally defined. In particular the local variables cannot be unambiguously
defined along a noncontractible loop which encircles in the { f1, f2} space the critical
value of integrable fibration.

The relation between classical and quantum problem enables one to associate with
the classical integrable fibration the joint spectrum of mutually commuting operators
F 1, Fz, corresponding to classical integrals Fi, F3 in involution. In the local regions of
the space { f1, f2} of values of integrals where the classical local action-angle variables
are defined, the joint spectrum of mutually commuting quantum operators Fy, F> form
aregular lattice, because by simple Bohr—Sommerfeld quantization rules the quantum
eigenstates correspond to integer values of action variables. The presence of singular-
ities for classical fibration and the absence of global action-angle variables manifest
themselves in the joint quantum spectrum through the absence of global quantum
numbers compatible with the classical limit, or equivalently through the presence of
defects in the lattice of common eigenvalues of mutually commuting operators.

The manifestation of classical Hamiltonian monodromy in the joint spectrum of
mutually commuting observables for associated quantum problem was first analyzed
by Cushman and Duistermaat [24] on the example of quantum spherical pendulum.
More systematic description of quantum monodromy was given by Vi Ngoc [25].
Simultaneously to this development of mathematical formalism various physical appli-
cations of quantum monodromy [27-37] and its interpretation in terms of specific
defects of the lattice of quantum states [2,3,26] was suggested.

Figure 3 illustrates the notion of quantum monodromy on the example of a model
system with two degrees of freedom. The chosen example [3] is the completely
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Fig. 3 Base of the integrable fibration F' of the 1:(—1) resonant oscillator system and the corresponding

quantum lattice (black dots). Dark gray quadrangles show the evolution of the elementary cell along the
closed path I which goes around the singular value (opaque circle)

integrable dynamical system defined on the four-dimensional classical phase space
with g1, g2 coordinates and p1, p» conjugated momenta by two functions in involution

1 1

Fr =i +4D) = 503 +43). @)
1 2

F =p1q2+qul+Z(P%+6112+P§+qg) : ®)

This dynamical model can be described as a dynamical system with 1:(—1) resonance.
It is equivalent from the point of view of the qualitative structure of joint spectrum to
problem describing the motion of single particle in a two-dimensional axially sym-
metric potential V (r) = ar* — br? often referenced as “champagne bottle” potential
or “mexican hat” potential, or to vibrational motion of a quasi-linear molecule near
the barrier of linearity [32]. Figure 3 shows the image of the energy—momentum map
(EM) defined by two integrals (1, F>). The EM map establishes the correspondence
between common level sets of two integrals (£, F>) in the four-dimensional phase
space and values ( f1, f>) of these integrals in the two-dimensional space Rf,l e Inverse
image of any regular point of EM map is a two-dimensional torus. Inverse image of the
isolated critical value (f; = 0, f> = 0) is apinched torus. The presence of this singular
fiber makes the fibration defined by (F, F») EM map locally nontrivial and possessing
the monodromy. The same Fig. 3 shows the joint spectrum of two commuting quantum
observables for the corresponding quantum problem. In any local simply connected
region D C R% 5 which does not include the singular value (f; = 0, fo = 0) the
system of common eigenvalues form a regular lattice. Choosing an elementary cell of
such lattice we can follow the evolution of the cell when transporting it along a closed
path in (f1, f2) plane which surrounds the critical value. After returning to the initial
point the cell differs from the initial cell. The transformation between initial and final
cell defines the quantum monodromy.

The most important for us here is the observation that the redistribution of energy
levels between branches observed within the semi-quantum model with two quan-
tum states leads to the presence of monodromy in corresponding complete classical
problem. The relation between redistribution and the monodromy was observed and
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formulated in [28,29]. The corresponding formal mathematical statement which con-
sists in some generalization of the Duistermaat-Heckman theorem [38] is still lacking.

5 Resonances and band structure. Generating function analysis

In previous section we have shown that topological quantum numbers (essentially
Chern classes) can be used to characterize energy bands. At the same time more stan-
dard way to characterize a band is to give a number of quantum states which belong
to this band. In this section we will discuss the relation between the number of quan-
tum states in the band and its topological invariants. The basic formula for such a
relation is the general index formula for the deformation quantization of vector bun-
dles over compact manifold. Several equivalent formulae were written by different
authors [39,40]. We refer the Fedosov quantization formula which gives the number
of quantum states for a vector bundle V over a compact manifold M:

Trl = /Ch(V) exp(Nx)Todd(M). (6)

Here Tr1 is the number of states for the Vector bundle V over manifold M. Todd (M)
is the Todd polynomial for the tangent fiber bundle over the manifold M. Ch(V) is
the Chern character of the vector bundle V, N is the quantum number corresponding
to the integral of motion associated with the subspace of slow variables (with the base
of the vector bundle).

In a particular simple case of a vector bundle over CP, we have for Todd class

Todd(CP,) = 1+ %x +x2, (7

and for the Chern character of the vector bundle V
Ch(V) =r 4 c1x + (c}/2 — e2)x2, (8)
where r, ¢y, ¢, are the rank and first and second Chern classes of the vector bundle V.
To calculate the Tr1 we need to expand the exp(Nx) and to keep the coefficient at x>

under the integral. The result is

n 3 2 2r 4+ ¢? 4+ 3¢ — 2¢
Tri= N2y Ny [

2 2 2

©))

This expression gives the number of states in the band as a function of topological
invariants of the vector bundle. Otherwise speaking the most general expression of
the number of states in a vector bundle over CP, space can be written in the form of
a generating function

A+ Bu + Cu?

(1 —u)3 (1o
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The coefficients A, B, C are related to topological invariants (rank r, first Chern class
c1, and second Chern class ¢;) of the vector bundle as

r=A+B+C; (11)
c1=—-B-2C; (12)
¢y =—B/2—2C + B*>/2+2BC +2C?. (13)

The so obtained relation between the coefficient of the generating function for the
number of states in bands and topological invariants of bands leads to very interesting
generalization. Instead of looking for bands defined over CP> phase space which is
related with the polyads formed by triply degenerate vibrational mode, we can study
more general polyads formed by three modes in resonance ki:ky:k3 with integers k;.
Polyads with such resonance are described in the classical limit by weighted projective
space CPy,k,k; Which is a natural generalization of CP;.

The generating function [41] for the number of states in polyads formed by three
vibrational modes in k1 :k;:k3 resonance has very simple form

1
(1 —thy(1 — tk2) (1 — ths)

8ky:ky:ks =

= ZCNtN. (14)
N

Here ¢ is the auxiliary variable, C is the number of quantum states in polyad with
polyad quantum number N. (We remind that the quantum state with »; quanta in i-th
mode belong to polyads with polyad quantum number N = n1k; + naky + n3ks.)

The special feature of polyads formed by vibrational modes in nontrivial resonance
is the fact that the number-of-state function C y has both smooth polynomial and oscil-
lating (periodic) contributions. More strictly speaking the number-of-state function is
a quasi-polynomial [42].

Manipulations with generating functions [5,6] shows that in general case the Cy
function can be represented in terms of Todd polynomials and this gives the idea to
try to find topological information about bands for general bands of polyads directly
from generating functions.

To see what kind of information can be obtained let us consider two examples of
polyad bands formed by three vibrational modes with two different resonance condi-
tions.

5.1 1:2:2 resonance
The first case is 1:2:2 resonance. Physically this resonance takes place, for example,

for triatomic ABA molecules like H,O. The generating function for the number of
states in polyads is

Hy = — cntV 15
8122 = t)(l e Z N 15)
=1+41+32 432 +66* +617+10:° + 10t + - -
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Each polyad is a line bundle of quantum states over weighted projective
space P(1,2,2). The numbers of states which appear in the power series expan-
sion (15) coincide with numbers present in the expansion for 1:1:1 resonance. Each
number in (15) appears twice at neighboring places. In other words taking only even
or only odd terms we get the sequence of numbers identical to sequence of numbers of
states in polyads for 1:1:1 resonance. From the formal point of view this is equivalent
to rewriting the generating function gi.2.» as

1+ 1+
g122 = _t§)3 = - ;)3 = > cnou (16)
N

= (1401 +3u + 6u® + 10u> + 15u* + - +).

Here u stands for 2. The whole series can be interpreted as describing pairs of quantum
bands over standard CP2 space, i.e. trivial rank 2 vector bundle over CP2.

Itis tentative to say that each vibrational polyad for 1:2:2 resonance can be described
as a line bundle over weighted projective space P(1,2,?2) or as a trivial line bundle
(with the appropriate choice of polyad number) over standard CP? space. In a equiv-
alent way this means that each vibrational polyad for 1:2:2 resonance with polyad
quantum number N can be considered as vibrational polyad for 1:1:1 resonance with
effective polyad quantum number N*. For N = ¢ mod 2, N* = (N — «)/2.

5.2 1:1:2 resonance

1:1:2 resonance appears in many molecules with doubly degenerate bending vibra-
tions and one stretching vibration with twice higher frequency. Typical example is the
CO» molecule in which only bending and symmetric stretching are taken into account.
The antisymmetric stretching is not in resonance and can be averaged out.

The generating function for the number of states in polyads is

81:12 =

m ZCNI (17

=142t + 442 +6r+9r +126° + 16154207 + -+ - .

Each polyad is a line bundle of quantum states over weighted projective
space P(1,1,2). The numbers of states which appear in the power series expan-
sion (17) differ significantly from numbers in the expansion for 1:1:1 resonance. In
order to compare numbers in (17) with numbers for 1:1:1 resonance model we rewrite
again the generating function (17):

1+20+12 2 L Ltu
(1—12)3 — (1-w? (1-w?

8112 = (18)
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Each of two contributions in (18) gives the coefficients in the series which coincide
with coefficients in expansion (17) if one takes only even or only odd terms.

2t 2 3 4
m:t(2+6u+12u +20u” +30u” +--), (19)
14+u 2 3 4
ﬁ:1—|—4u—i—9u + 16u” +25u™ 4 -- - . (20)
— U

The interpretation of such decomposition can be as follows. Polyads for 1:1:2 res-
onance problem with odd polyad quantum number N can be considered as a trivial
rank 2 vector bundle over standard CP? space with effective polyad quantum number
N* = (N — 1)/2. In other words, the internal structure for odd polyads for 1:1:2
model with quantum number N can be represented as a simple superposition of two
polyads for 1:1:1 resonance with effective polyad number N* = (N — 1)/2. Each
such effective polyad gives a half of states of the initial N polyad for 1:1:2 problem.

If we look for the internal structure of 1:1:2 polyads for swing spring problem
[35,36] it is clearly seen that odd polyads split into “identical”’ [ < O and/ > 0
parts which in its turn strongly resemble generic lattice of quantum states for the
internal structure of 1:1:1 resonance problem with effective polyad quantum number
N*= (N —1)/2.

The generating function for even polyads has the form

14+u
(I —u)

and can be interpreted as a generating function for the number of states of rank r = 2
vector bundle (with nontrivial topology) over CP? space. To characterize the topology
of vector bundle over CP? two Chern numbers, c1, ¢3, are needed. Together with the
rank, r of the vector bundle we have three integers, ci, ¢z, ¥ which from the point
of view of numbers of states in polyads are equivalent to three coefficients in the
numerator of the generating function. In this particular case the rank of vector bundle
is r = 2, and the Chern numbers are ¢c; = —1, ¢ = 0. The effective polyad quantum
number N* for rank 2 model over CP; is naturally N* = N/2.

On the basis of these examples we suggest that the internal structure of polyads in
the case of general resonance can be put in equivalence with the internal structure of
a finite set of topologically nontrivial bands over standard complex projective space.
The needed numbers of bands and their topological invariants can be deduced from
the analysis of generating functions.

6 Conclusions

In this paper we have put in evidence the relation between the structure of bands and
the topological invariants introduced in completely classical or semi-quantum mod-
els. The rearrangement of bands through the redistribution of energy levels between
bands under the variation of some control parameters is a generic phenomenon which
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is characterized by the modification of such topological invariants as Chern classes.
The simplest rearrangement of bands takes place for problems with only one degree of
freedom responsible for the internal structure of bands. In this case the rearrangement
consists generically in a redistribution of energy levels between two branches while the
number of bands remains fixed. When the internal structure of bands is due to several
degrees of freedom the rearrangement of bands can involve the modification of the
number of bands. The formation of topologically coupled bands is a new characteristic
feature which was up to now analyzed in details only for model problem with slow
variables being defined over the phase space with two degrees of freedom. The clas-
sification of generic rearrangements of bands for problems with arbitrary dimension
and topology of the classical phase space of slow variables remains to be an interesting
open problem.
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